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Abstract—The global positioning system (GPS) provides 
accurate positioning and timing information that is useful in 
various civil and military applications. The adaptive filtering 
predictor for GPS jamming suppression applications is proposed. 
This research uses the gLab-G software to substitute for the 
hardware receiver to record the GPS signal waveform. The 
normalized least-mean-square (NLMS) and set-membership 
NLMS (SM-NLMS) filtering methods are employed for 
continuous wave interference suppression.  Simulation results 
reveal that our proposed methods can provide the better 
performances when the interference-to-noise ratios (INR) are 
varied from 20 to 50 dB. The anti-jamming performances are 
evaluated via extensive simulation by computing mean squared 
prediction error (MSPE) and signal-to-noise ratio (SNR) 
improvements. 

Keywords—global positioning system (GPS); gLab-G; adaptive 
filtering algorithms; normalized least-mean-square (NLMS); set-
membership NLMS (SM-NLMS). 

I.  INTRODUCTION 
The global positioning system (GPS) [1, 2] can provide 

accurate positioning and timing information useful in many 
applications. The satellites in this system supply service to 
consumers by using direct sequence spread spectrum (DS-SS) 
techniques. GPS spreads the bandwidth of transmitting signals 
with coarse/acquisition (C/A) code, which results in a 43dB 
processing gain. Thus, DS-SS technique inherently exhibits a 
modest anti-jamming property that can cope with narrowband 
interference. However, when the jamming power is high, it is 
necessary to supplement the innate processing gain by using 
additional signal processing techniques such as adaptive filters. 
It has been demonstrated [3-7] that the capability of DS-SS to 
reject narrowband interference can be further improved by 
using adaptive filters prior to despreading. These jamming 
sources can be inherently stationary/nonstationary and 
associated high order statistics, so nonlinear adaptive filters 
may be more suitable to the prediction of these jamming 
signals. 

The study of the adaptive filter used in the anti-jamming 
has attracted considerable attention in recent years. Although 
the set-membership normalized least-mean-square(SM-NLMS) 

algorithm may be seen as a generalization of thewell-known 
normalized least-mean-square (NLMS) algorithm, it inherits 
some desired features of the set-membership filtering (SMF) 
approach. The SMF algorithms are able to combat conflicting 
requirements such as fast convergence and low misadjustment 
by introducing a modification on the objective function. In 
addition, these algorithms exhibit reduced complexity due to 
data-selective updates, which involve two steps: a) information 
evaluation and b) update of parameter estimates [18]. Some of 
these features are: robustness against noise, reduced number of 
arithmetic operations (especially after convergence) and lower 
steady-state mean square error (MSE) if the parameters are 
properly chosen [8, 9]. Many papers have confirmed these 
good features of SM algorithms in a number of applications 
such as interference suppression for CDMA systems [10], the 
available literature on this topic has always shown that the SM 
algorithms outperform their non-SM counterparts [9]. In most 
articles solely explained the merit and adjustment of the 
coefficients for adaptive filter, compared with few makes the 
analysis and comparison in view of the merge of NLMS and 
SM-NLMS methods. More concrete explanation, since these 
algorithms have some same coefficient hypotheses, it would be 
useful to come up with some guidelines to set the parameters in 
order to achieve a good performance [9], afterward compares 
two kinds of filter SNR and MSPE. 

II. RECEIVED SIGNAL MODELS 
GPS systems are continuously going through progressive 

evolution in the field of positioning and navigation. A receiver 
computes its position, velocity and time solution by processing 
received data from a constellation of satellites. Unfortunately, 
the low power GPS signal is susceptible to many types of 
interference, which can be either intentional or unintentional. 
This interference can degrade the quality of, or totally disable 
some of, the processes in the GPS receivers. 

The satellites broadcast ranging codes and navigation data 
at two frequencies: primary L1 and secondary L2, and only the 
L1 signal, free for civilian use, will be considered. A simplified 
block diagram of an anti-jamming GPS model is shown in Fig. 
1. The transmitted spread spectrum signal is 
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Fig. 1.  GPS spread spectrum system (a) The transmitter is generate by gLab-G software, (b) Anti-jamming receiver. 

 )2cos()]()([)( 1 θπ +⊕= tftCAtDtS L  (1) 

where )(tD  is binary data ( ± 1) from the satellite with duration 
T (T=20ms). )(tCA represents binary Gold Cold ( ± 1) with 
chip duration Tc ( MHzTR CC 023.1/1 == ). 1Lf andθ  are L1 
carrier frequency (1575.42MHz) and phase delay. The integer 

dB4320460/ === cTTPG  is the processing gain of the GPS 
system. 

The received signal )(tr  can be modeled as 

 j(t)n(t)S(t)r(t) ++=  (2−1) 

where )(tn  is additive white Gaussian noise (AWGN) with 
variance 2σ , and the jamming source )(tj  has a bandwidth 
much smaller than the GPS spreading bandwidth. 

The received signal is bandpass filtered, amplified and 
down converted. Due to the downconversion, the spectrum of 
the signal is shifted to the baseband frequency. To further 
simplify the analysis, we assume that the received signal passes 
through a filter matched to the chip waveform and is sampled 
synchronously once during each chip interval. The observation 

 )()()()( kjknkSkr ++=  (2−2) 

where { )(kS }, { )(kn } and { )(kj } are discrete time sampled 
waveform of { )(tS }, { )(tn }, and { )(tj }, respectively. They 
are assumed to be mutually independent. The )(kn  can be 
modeled as band-limited and white, and the jamming source 
being considered has a bandwidth much narrower than CT/1 . 
The )(kS  sequence is )()( kCAkD ⊕  taking values of ± 1. 

The low power jamming signal can be suppressed by GPS 
receivers with the 43dB processing gain (C/A code). However, 

if strong jamming signals are present, they can result in 
degradation of navigation accuracy or even complete loss of 
receiver tracking. In this project, the single tone continuous 
wave interference (CWI) is considered: 

 )cos()( θω += ∆ ckTJkj  (3) 

where J   is amplitude and ∆ω is its frequency offset from the 
center frequency of the spread spectrum signal. cT  is the chip 
duration, which is equal to the sampling interval. θ  is a 
random phase uniformly distributed over the interval )2,0[ π . 

SMF Predictor

r(k)=S(k)+n(k)+j(k)

T

z(k)

-
+

)(
^

kj

∫
Tc

0

 Fig. 2.  Narrowband canceller block diagram 

In Fig. 2, the narrowband canceller composed of an RNN 
predictor and an adder is employed to suppress the jamming 
signals. The { )(kS } and { )(kn } sequences are wideband 
signals with nearly flat spectra. Thus, these two sequences 
cannot be estimated from their past values. The interfering 
signal { )(kj } can be predicted because of its correlated 
property. The error signal )(kz  is obtained as 

 )()()(ˆ)()()()( knkSkjkjknkSkz +≅−++=  (4) 

)(kz can be viewed as an almost interference-free signal and is 
fed into the correlator. 

III. ADAPTIVE FILTERING ALGORITHMS 
The basic assumption is that the additional noise is 

considered bounded, and the bound is either known or can be 
estimated [11]. The key strategy of the formulation is to find 
feasibility set such that the bounded error specification is met 
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for any member of this set. As a result, the set-membership 
filtering (SMF) is aimed at estimating the feasibility set itself 
or a member of this set [12]. The SMF allows the reduction of 
computational complexity in adaptive filtering, since the filter 
coefficients are updated only when the output estimation error 
is higher than the pre-determined upper bound [12, 13]. In 
addition, this section describes normalized least-mean-square 
(NLMS) and set-membership NLMS (SM-NLMS) algorithm 
with partial update in some detail. 

A. The Normalized LMS Algorithm 
If one wishes to increase the convergence speed of the 

least-mean-square (LMS) algorithm without using estimates of 
the input signal, a variable convergence factor is a solution. 
The normalized least-mean-square (NLMS) algorithm usually 
converges faster than the LMS algorithm, since it utilizes a 
variable convergence factor. 

The updating equation of the LMS algorithm can employ a 
variable convergence factor kµ  in order to improve the 
convergence rate. The updating formula is as follows 

 ( ) ( ) ( ) ( ) ( ) ( )kwkwkxkeukwkw k
~21 ∆+=+=+  (5) 

where kµ  must be chosen with the objective of achieving a 
faster convergence. A method is to reduce the instantaneous 
squared error as possible. This method is that the instantaneous 
squared error is a good and simple estimate of the mean-square 
error (MSE). 

The instantaneous squared error is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kxkwkdkwkxkxkwkdke TTT 222 −+=  (6) 

If a change given by ( ) ( ) ( )kwkwkw ~~ ∆+=  is performed in 
the weight vector, the corresponding to squared error can be 
expressed as follows 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )kxKwkdkwkxkxkw

kwkxkxkwkeke
TTT

TT

~2~~

~2~ 22

∆−∆∆+

∆+=
 (7) 

then 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )kwkxkxkwkekxkw

kekeke
TTT ~~~2

~ 22

∆∆+∆−=

−≡∆
 (8) 

In order of achieving a faster the convergence rate, the method 
is to make ( )ke2∆  negative and minimum by appropriately 
adjustment kµ . 

where a change given by ( ) ( ) ( )kxkekw kµ2~ =∆  in equation (8), 
it expressed as follows 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]2222 44 kxkxkekxkxkeke T
k

T
k µµ +−=∆  (9) 

The value of kµ  such that ( ) 0
2

=
∂

∆∂

k

ke
µ

 is expressed as 

 
( ) ( )kxkxTk 2
1

=µ  (10) 

This value of kµ led to the negative value of ( )ke2∆ , thus it 
corresponds to a minimum point of ( )ke2∆ . 

Using this variable convergence factor, the updating 
equation for the LMS algorithm is expressed as 

 ( ) ( ) ( ) ( )
( ) ( )kxkx

kxkekwkw T+=+1  (11) 

Usually a convergence factor nµ  is introduced in the updating 
formula in order to inhibit the misadjustment, since all the 
derivations are based on instantaneous values of the squared 
errors and not on the MSE. Also a parameter gamma should be 
included, in order to avoid large step sizes when ( ) ( )kxkxT  
becomes small. The coefficient updating equation is as 

 ( ) ( )
( ) ( )

( ) ( )kxke
kxkx

kwkw T
n

+
+=+

γ
µ1  (12) 

The resulting algorithm is called the NLMS algorithm, and 
summarized can be represented as 

Initialization 

 ( ) ( ) [ ]Twx 0000ˆ0 ==  (13) 

chose nµ  in the range 20 ≤< nµ  , gamma is small constant 

Do for 0≥k  

 ( ) ( ) ( )kwkxkdke T−=)(  (14) 

 ( ) ( )
( ) ( )

( ) ( )kxke
kxkx

kwkw T
n

+
+=+

γ
µ1  (15) 

The range of values of nµ  to guarantee stability can be 
derived by first considering that 

 ( ) ( )[ ] [ ]RtrkxkxE T =  (16) 
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and that 

 
( ) ( )
( ) ( )

( ) ( )[ ]
( ) ( )[ ]kxkxE

kxkeE
kxkx

kxkeE TT ≈







 (17) 

That the average value of the convergence factor actually 
applied to the LMS direction ( ) ( )kxke2 is [ ]Rtrn 2µ . Finally, 
by comparing the updating formula of the standard LMS 
algorithm with that of the NLMS algorithm, the desired upper 
bound result is 20 ≤< nµ or follows as 

 [ ] [ ]RtrRtr
n 1

2
0 <=<

µ
µ  (18) 

B. The Set-Membership NLMS Algorithm 
The SMF concept is an applicable to adaptive-filtering are 

linear in parameters. The adaptive-filter output is given by 

 ( ) ( )kxwky T=  (19) 

where ( ) ( ) ( ) ( )[ ]TN kxkxkxkx 10= is the input signal, and 

[ ]TNwwww 10=  is the parameter. 

Considering a desired signal sequence of ( )kd  and a 
sequence of input of ( )kx , both for ∞= ,,2,1,0 k . The 
vectors ( )kx  and 1+∈ NRw , where R  are real numbers, 
whereas ( )ky  and ( )ke  represent the adaptive-filter output 
signal and output error. 

The critical idea of the SM-NLMS algorithm is to perform 
a test to verify if the previous estimate ( )kw  lies outside the 

constraint set ( )kH , i.e., ( ) ( ) γ>− kxkwkd T)( . If the 
modulus of the error signal is greater than the specified bound, 
the new estimate ( )1+kw  will be updated to the closest 
boundary of ( )kH  at a minimum distance, i.e., the SM-NLMS 

minimizes ( ) ( ) 21 kwkw −+  subjected to ( ) ( )kHkw ∈+1  [14]. 
The updating is performed by an orthogonal projection of the 
previous estimate onto the closest boundary of ( )kH . 

In order to get the update equations, first to see the a priori 
error ( )ke  given by 

 ( ) ( ) ( ) ( )kxkwkdke T−=  (20) 

then, let’s start with the NLMS algorithm which utilizes the 
following recursion for updating ( )kw  

 ( ) ( ) ( )
( ) ( )

( ) ( )kxke
kxkx

kkwkw T+
+=+

γ
µ1  (21) 

where in the present discussion ( )kµ  is the variable step size 
that should be appropriately chosen in order to satisfy the 
desired set-membership updating. 

The update should the following situation 

 ( ) ( ) ( ) ( ) γ>−= kxkwkdke T  (22) 

or 

 ( ) ( ) ( ) ( ) γ−<−= kxkwkdke T  (23) 

and the a posteriori error should be given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )kxkxke
kxkx

kke

kxkxke
kxkx

kkxkwkd

kxkwkdk

T
T

T
T

T

T

+
−=

+
−=

±=+−=

γ
µ

γ
µ

γε

-

1

 (24) 

where ( )kε  becomes equal to γ±  because the coefficients are 
updated to the closest boundary of ( )kH . Since gamma, whose 
only task is regularization, is a small constant it can be 
disregarded leading to the following equality 

 ( ) ( ) ( )[ ] γµε ±=−= kkek 1  (25) 

The above equation leads to 

 ( ) ( )ke
k γµ ±=−1  (26) 

where the plus (+) sign applies for the case when ( ) 0>ke  and 
the minus (-) sign applies for the case where ( ) 0<ke . 
Therefore, by inspection we conclude that the variable step 
size, ( )kµ , is given by 

 ( ) ( ) ( )




 >−

=
otherwise

keif
kek

0

1 γγ
µ  (27) 

The updating equations (20), (27), and (21) are quite 
similar to those of the NLMS algorithm except for the variable 
step size ( )kµ . The SM-NLMS algorithm is ( ) ( )kxwky T= . As 

a rule of thumb, the value of γ  is chose around nσ5 , where 
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2
nσ  is the variance of the additional noise. That the NLMS 

algorithm minimizes ( ) ( ) 2
1 kwkw −+ subjected to the 

constraintthat ( ) ( ) ( )kdkxkwT =+1 , as such it is a particular 
case of the SM-NLMS algorithm by choosing the bound 0=γ . 
It should be noticed that by using a step size ( ) 1=kµ  in the 
SM-NLMS whenever ( ) ( )kHkw ∉ , one performs a valid 
update since the hyperplane with zero a posteriori error lies in 
H(k). In this case the resulting algorithm does not minimize the 
Euclidean distance ( ) ( ) 21 kwkw −+  since the a posteriori 
error is zero and less than γ . 

IV. SIMULATION RESULTS 
The simulation results of our adaptive filtering method are 

obtained to confirm the jamming rejection characteristics. The 
performance is expressed in terms of SNR improvement and 
MSPE. 

(1) SNR improvement: The metric adopted to verify the steady 
state performance is the “SNR improvement”, which is defined 
in [4] and given by, 

 ( )dBkSkzEkSkrEimprovemnt   ])()(/)()(log[10 22
−−=SNR (28) 

(2) Mean squared prediction error (MSPE, MSPEV ): The MSPE 
is used as an index to evaluate the convergence rate of transient 
responses for various algorithms. It is defined as 

 













= ∑

=

numSIM

i
i

num
ke

SIM
kV

1

2 )(1)(  (29−1) 

 



























= ∑

+−=

100*

1)100*)1((

)(
100

1log)(
n

ni
MSPE iVnV  (29−2) 

where SIMnum is the total number of simulations (which is 

500 here), and )(kei  is the predicted error of the k-th iteration 
for the i-th run. In this simulation, the received signal is band-
pass filtered. The noise power in this bandwidth can be 
approximated by 

 BkTN E=  (30) 

where k is Boltzmann’s constant ( 123103806.1 −−× JK ), B is 
the bandwidth in Hz, and TE is the effective noise temperature 
in Kelvin. The effective noise temperature is a function of sky 
noise, antenna noise temperature, line losses, receiver noise 
factor, and the ambient temperature. This noise power is set to 
be -138.5dBW [15]. 

The length of tapped delay line is set to ten. The converge 
rate  nµ  is set as 05.0 and parameter gamma γ  is set as 1010−  

in the NLMS filter.  The parameter  γ  is set as 1010−   and  γ   

is set as 1010−   in the SM-NLMS filter. The next step in the 
process is to determine the signal power. The GPS link budget 
may be analyzed starting with the minimum power transmitted 
by the satellites. The C/A-code (1575.42MHz for carrier 
frequency) is transmitted at an effective level of 478.63W 
(26.8dBW) effective isotropic radiated power (EIRP) [16, 17]. 
After you know the noise power, we know that the signal is 
smaller than the noise, approximately is smaller than 20 dB. 
This results in signal power of approximately -157dBW. The 
above step in the process is to determine the signal power and 
noise power, and the next step is to add the jamming signal. 

 
Fig. 3.  Single tone continuous wave interferencesuppression performances 

of SNR improvement 

Fig. 3 shows the interference suppression performances of 
SNR improvement. The INR is varied from 20dB to 50 dB. It 
is shown that the SM-NLMS method achieves the higher SNR 
improvement than the NLMS method. On average, the SM-
NLMS method is 7.8 dB higher than NLMS method does. 

It is shown in Figure 4 (a) to (d) that the INR is varied from 
20 dB to 50 dB, respectively. The SM-NLMS method provides 
a better transient response and shorter convergence time than 
NLMS method while utilized lower computation burden. It 
also shows the better prediction error for SM-NLMS method 
under steady state condition. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 4.  jamming suppression performances of averaged MSPE (a) 20dB (b) 
30dB (d) 40dB (d) 50dB. 

V. CONCLUSIONS 
This paper presents the adaptive filtering algorithms for 

GPS interference cancellation. The NLMS and SM-NLMS 
methods are considered for CWI jamming signal. Adjustment 
of the coefficients, with the prediction error of adjustment, can 

robustly estimate stationary jamming signals. The adaptive 
filtering algorithms were derived and the corresponding 
interference cancellation performances are presented.The 
proposed adaptive filtering scheme indeed achieves improved 
SNR and prediction error those of the adaptive filters in various 
INR circumstances. 
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